![]() | ||
Меню |
РезисторыСамым используемым элементом в радиотехнических устройствах является - резистор (старое название - сопротивление). Основная характеристика резистора - сопротивление, измеряется в омах. Выпускается два вида резисторов: стабильные и общего назначения. Производство стабильных резисторов дорого и поэтому они используются в дорогой высокоточной аппаратуре. Мы же будем использовать резисторы общего назначения. Их сопротивление может изменятся в пределах 10% (зависит от ТКС). У обычных резисторов ТКС (Температурный Коэффициент Сопротивления) положителен то есть с увеличением температуры увеличивается сопротивление. Только у одного простого элемента он отрицателен: у углерода. Одной из основных характеристик является рассеиваемая мощность. Рассеиваемая мощность это мощность, которую резистор может рассеять без повреждения. Измеряется в ваттах. Находится по формуле мощность=ток2 * сопротивление. У каждого вещества есть свое сопротивление, у некоторых оно очень большое (дерево, пластмасса), у других маленькое (металлы, жидкости). Сопротивление зависит от материала (у золота оно будет меньше чем у алюминия), от длинны проводника (зависимость прямая: чем длиннее тем больше сопротивление) и от площади среза проводника (чем площадь больше тем сопротивление меньше). Теперь же поговорим об использовании постоянных резисторов в схемах. Обозначение постоянных резистроров на принципиальных схемах:
Переменные резисторы бывают: 1) одинарные и сдвоенные 2) одно и многооборотные 3) с выключателем и без него По характеру изменения сопротивления:1) Линейные т. е. Пропорционально углу поворота оси (группа А) 2) Обратно логарифмической т. е. сначала понемногу, а потом резко увеличивается (группа Б) 3) Логарифмические (группа В) 4) И другие (группы Е, И) Бывают проволочные и пленочные переменные резисторы. Проволочные отличаются высокой стабильностью, сравнительно малым уровнем своих шумов и низким ТКС.КонденсаторыКонденсатор, в народе именуемый кондером, является средством накопления электроэнергии в электрических цепях. Типичной областью применения являются: сглаживающие фильтры в источниках электропитания; цепи межкаскадовых связей; фильтрация помех. Электрическая характеристика конденсатора определяется его конструкцией и средствами используемых материалов. Конденсатор состоит из пластин (или обкладок) находящиеся друг перед другом, сделанных из токопроводящего материала, и изолирующего материала (в основном бумага и слюда). Основной характеристикой является емкость. Измеряют емкость в МикроФарадах (мкФ)(1*10-6 Фарада), НаноФарадах(нФ)(1*10-9 Фарада) и ПикоФарадах (пФ)(1*10-12 Фарада). Если вы разберете конденсатор, то увидите там обкладки. Емкость конденсатора пропорционально увеличивается с площадью обкладок и уменьшается с расстоянием между ними. Еще одним важным параметром конденсатора является рабочее напряжение. Напряжение это не с потолка берется, а характеризуется максимальным напряжением при превышении которого наступает пробой диэлектрика и смерть кондера. Параллельное и последовательное соединение в схемах При параллельном соединении двух конденсаторов С1 и С2: Емкость находится так: Снужное = С1 + С2 Напряжение: напряжениенужное=напряжение*С1/С2 При последовательном соединении двух конденсаторов С1 и С2: Емкость находится так: Снужное = С1*С2/ С1 + С2 Напряжение: на наименьшую емкость подается большее напряжение. Можно конечно написать формулы, но лучше не мудрить и купить нормальный кондер. Расшифровка обозначений: Примеры, остальные по аналогии: 9,1пф - 9П1 22пф - 22П 150пф - Н15 1800пф - 1Н8 0.01мкФ - 10Н 0.15мкФ - м15 50мкФ - 50М 6.8мкФ - 6М8 Зарубежные керамические дисковые конденсаторы (темно желтые такие): (последняя цифра обозначает кол-во нулей на конце)391 - 390пф132 - 1300пф 473 - 47000пф 1623 - 162000пф - 162нф 154 - 150000пф - 0.15мкф 105 - 1000000пф - 1мкф .001 - 0.001мкф .02 - 0.02мкф Типы конденсаторов:БМ - бумажный малогабаритный БМТ - бумажный малогабаритный теплостойкий КД - керамический дисковый КЛС - керамический литой секционный КМ - керамический монолитный КПК-М - подстроечный керамический малогабаритный КСО - слюдянной опресованный КТ - керамический трубчатый МБГ - металлобумажный герметизированный МБГО - металлобумажный герметизированный однослойный МБГТ - металлобумажный герметизированный теплостойкий МБГЧ - металлобумажный герметизированный однослойный МБМ - металлобумажный малогабаритный ПМ - полистироловый малогабаритный ПО - пленочный открытый ПСО - пленочный стирофлексный открытый Обратите внимание, что существуют поляризированные и неполяризированные конденсаторы. При неправильном включении поляризированного вы можете вывести его из строя! Будьте внимательны, и смотрите на обозначения на корпусе кондера. Например дисковые керамические - неполяризированные, а почти все конденсаторы ёмкости более 0,5 мкФ - поляризированные. Конденсаторы переменной ёмкости Применяются чаще всего для регулировки приемных - передающих контуров, и другого. Подстроечные конденсаторы необходимо крутить диэлектрической отверткой, а на переменных выведена ручка (по аналогии с резистрорами).Обозначения на схеме:
Диоды и их разновидностьМы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в "семейство" диодов входит не один десяток полупроводниковых приборов, носящих название "диод". Диод представляет собой небольшую емкость с откачанным воздухом, внутри которого на небольшом расстоянии друг от друга находится анод и второй электрод это катод, одна из которых обладает электропроводностью типа р, а другая - n. Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощью насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью – это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький) Внутреннее сопротивление диода (открытого) - величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом. Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем – рассмотрим все поверхностно. В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и дрОбозначаются на схемах вот так: Стабилитрон Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителяВарикап Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.Тиристор Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое.Симистор Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, которые включены встречно-параллельно. Симистор пропускает ток в обоих направлениях.Светодиод Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.Инфракрасный диод Красные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне . Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды.Фотодиод Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.ТранзисторыПожалуй, сегодня сложно представить себе современный мир без транзисторов, практически в любой электронике, начиная от радиоприёмников и телевизоров, заканчивая автомобилями, телефонами и компьютерами, так или иначе, они используются. Uкэ = напряжение коллектор-эмиттер Uбэ = напряжение база-эмиттер Ic = ток коллектора Iб = ток базы В зависимости от того, в каких состояниях находятся переходы транзистора, различают режимы его работы. Поскольку в транзисторе имеется два перехода (эмиттерный и коллекторный), и каждый из них может находиться в двух состояниях: 1) открытом 2) закрытом. Различают четыре режима работы транзистора. Основным режимом является активный режим, при котором коллекторный переход находится в закрытом состоянии, а эмиттерный – в открытом. Транзисторы, работающие в активном режиме, используются в усилительных схемах. Помимо активного, выделяют инверсный режим, при котором эмиттерный переход закрыт, а коллекторный - открыт, режим насыщения, при котором оба перехода открыты, и режим отсечки, при котором оба перехода закрыты. При работе транзистора с сигналами высокой частоты время протекания основных процессов (время перемещения носителей от эмиттера к коллектору) становится соизмеримым с периодом изменения входного сигнала. В результате способность транзистора усиливать электрические сигналы с ростом частоты ухудшается.Некоторые параметры биполярных транзисторов Постоянное/импульсное напряжение коллектор – эмиттер. Постоянное напряжение коллектор – база. Постоянное напряжение эмиттер – база. Предельная частота коэффициента передачи тока базы Постоянный/импульсный ток коллектора. Коэффициент передачи по току Максимально допустимый ток Входное сопротивление Рассеиваемая мощность. Температура p-n перехода. Температура окружающей среды и пр… Граничное напряжение Uкэо гр. является максимально допустимым напряжение между коллектором и эмиттером, при разомкнутой цепи базы и токе коллектора. Напряжение на коллекторе, меньше Uкэо гр. свойственны импульсным режимам работы транзистора при токах базы, отличных от нуля и соответствующих им токах базы (для n-p-n транзисторы ток базы >0, а для p-n-p наоборот, Iб<0). К биполярным транзисторам могут быть отнесены однопереходные транзисторы, таковым является например КТ117. Такой транзистор представляет собой трехэлектродный полупроводниковый прибор с одним р-n переходом. Однопереходный транзистор состоит из двух баз и эмиттера.Проверка биполярных транзисторов Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод. Проверка транзистора обычно осуществляется омметром, проверяют оба p-n перехода транзистора: коллектор – база и эмиттер – база. Для проверки прямого сопротивления переходов p-n-p транзистора минусовой вывод омметра подключается к базе, а плюсовой вывод омметра – поочередно к коллектору и эмиттеру. Для проверки обратного сопротивления переходов к база подключается плюсовой вывод омметра. При проверке n-p-n транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление – при соединении с базой минусового вывода. Транзисторы так же можно прозванивать цифровым мультиметром в режиме прозвонки диодов. Для NPN красный щуп прибора "+" присоединяем к базе транзистора, и поочередно прикасаемся черным щупом "-" к коллектору и эмиттеру. Прибор должен показывать некоторое сопротивление, примерно от 600 до 1200. Затем меняем полярность подключения щупов, в этом случае прибор ничего не должен показывать. Для структуры PNP порядок проверки будет обратным.MOSFET транзисторы Несколько слов хочу сказать про MOSFET транзисторы (metal–oxide–semiconductor field-effect transistor), (Метал Оксид Полупроводник (МОП)) – это полевые транзисторы, не путать с обычными полевиками! У полевых транзисторов три вывода: G - затвор, D - сток, S – исток. Различают N канальный и Р, в обозначении данных транзисторов имеется диод Шоттки, он пропускает ток от истока к стоку, и ограничивает напряжение сток – исток.Плюсы у данных транзисторов следующие: Минимальная мощность управления и большой коэффициент усиления по току Лучшие характеристики, например большая скорость переключения. Устойчивость к большим импульсам напряжения. Схемы, где применяются такие транзисторы, обычно более простые. Минусы: Стоят дороже, чем биполярные транзисторы. Боятся статическое электричества. Наиболее часто для коммутации силовых цепей применяют MOSFET с N-каналом. Напряжение управления должно превышать порог 4 В, вообще, необходимо 10-12 В для надежного включения MOSFET. Напряжение управления - это напряжение, приложенное между затвором и истоком для включения MOSFET транзистора. Рекомендации по эксплуатации транзисторов Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым, например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, дл защиты от перенапряжения часто применяют быстродействующие диоды. Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева. Автор: Адвансед |
Ссылки |