П'ятниця, 19.04.2019, 03:56
Гость

Мішатронік

Автор - Кренцін Михайло

Мобільна версія | Додати у вибране  | Мій профіль | Вихід | RSS |
Меню сайту
Наше опитування
Вам легко дається програмування
Всього відповідей: 1
Статистика

Онлайн всього: 1
Гостей: 1
Користувачів: 0




Основные понятия графики

В современных компьютерах изображения на экране строятся в виде растров, и всегда прямоугольных.

Пример растра и изображения, построенного на нем:

Пример растра и изображения

На рисунке вы видите сильно увеличенную картинку, на самом же деле элементарные точки, из которых состоит изображение, или пиксели, должны быть очень маленькими, чтобы глаз воспринимал картинку как единое целое. Пиксель ( Pixel ) – сокращение от Picture Element (элемент рисунка).

Экраны цветных мониторов состоят из прямоугольной решетки точек (пикселей), светящихся разным цветом. Каждый цветной пиксель образован тремя более мелкими по площади участками красного, зеленого и синего цветов. При свечении этих участков с разной интенсивностью цвета смешиваются, создавая элементы изображения различных оттенков и яркости.

Важной характеристикой растра является его расширение, т.е. количество точек (пикселей) на единицу длины. Чем это число выше, тем более мелкими являются сами пиксели, и, соответственно, более плотно они располагаются на плоскости, что и приводит к тому, что мы воспринимаем их как единое, цельное изображение. Из года в год разрешающая способность мониторов, принтеров, сканеров и т.п. растет.

Итак, на растровом устройстве отображения любая фигура состоит из множества точек пикселей. Естественно, положение каждой точки изображения задано координатами X и Y . Координаты – целые числа, они задают номера колонки и строки растра и не зависят от физического размера экрана. Оси координат направлены следующим образом: горизонтальная ось X направлена слева направо; вертикальная ось Y направлена сверху вниз; верхний левый угол имеет координаты (0,0).

Оси координат

Очевидно, что запись изображения требует хранения информации о положении множества точек, для каждой из которых должен быть задан цвет. Цветное изображение получается смешиванием трех основных цветов – красного, зеленого и синего. Такая модель представления цвета называется моделью RGB ( Red - Green - Blue ). Управляя интенсивностью компонентов, можно получить различные оттенки и степени интенсивности цвета. В частности, для получения градаций серого надо взять интенсивности трех основных цветов равными друг другу.

В современных SVGA мониторах предусмотрено, как правило, по 2 6=64 уровня интенсивности каждого из основных цветов, таким образом, в целом можно получить (2 6) 3=262144 цвета. Для представления большего числа цветов необходим больший объем памяти. Один бит может кодировать два цвета: 1 – белый, 0 – черный. Два бита могут хранить 2 2=4 цветовых комбинации, 4 бита – 16, 8 бит – 256, 16 бит – 65536, 32 бита – 4294967296.

Если для каждой точки задавать уровни красного, зеленого и синего цветов, то потребуется достаточно большой объем памяти для хранения информации об изображении. Для сокращения объема памяти используются палитры. При этом ограничиваются некоторым количеством цветов, например 16 или 256, каждому из цветов присваивается номер (соответственно, от 0 до 15 или от 0 до 255), и при записи изображения используют именно этот код. «Точка цвета номер 5». Информация о палитре, то есть данные, сколько красного, зеленого и синего нужно взять для получения «цвета номер 5», хранится и используется отдельно от записи изображения.

Важное понятие в машинной графике – графический примитив – совокупность пикселей, определяющая некоторую геометрическую фигуру. Наиболее распространенные примитивы – это точка, линия, прямоугольник, закрашенный прямоугольник, окружность и эллипс.

Растровые изображения обладают одним очень существенным недостатком: их трудно увеличивать или уменьшать, т.е. масштабировать. При уменьшении растрового изображения несколько соседних точек преобразуются в одну, поэтому теряется разборчивость мелких деталей. При увеличении – увеличивается размер каждой точки, поэтому появляется ступенчатый эффект. Кроме того растровые изображения занимают много места в памяти.

Чтобы избежать указанных проблем, изобрели так называемый векторный способ кодирования изображений.

Векторный способ представления графики заключается в том, что геометрические фигуры, кривые и прямые линии, составляющие рисунок, хранятся в памяти компьютера в виде математических формул и геометрических абстракций: круг, квадрат, эллипс и т.п. Для каждого примитива существуют свои характерные параметры. Например, для отрезка – это координаты концов; для окружности – координаты центра и радиус. Т.е. размеры, кривизна, местоположение элементов изображения хранятся в виде числовых коэффициентов. Благодаря этому появляется возможность масштабировать изображения, поворачивать, подвергать любым другим геометрическим преобразованиям с помощью простых математических операций, в частности, простым умножением параметров на коэффициент масштабирования. При этом качество изображения не меняется.

Формирование изображения на экране

Из книги Румянцева Дмитрия, Монастырского Леонида «Путь программиста: Опыт созидания личности программиста». – М.: «Издательский Дом ИНФРА-М», 2000.

Программисту не обязательно знать технические подробности конструкции монитора, но общее представление о его схеме он иметь должен. Еще важнее представлять, как программа работает с памятью, когда осуществляет вывод информации на какое-либо из устройств визуального отображения, подключенных к компьютеру.

Участок оперативной памяти компьютера, где хранится информация об изображении, появляющемся на экране, называется видеопамятью. Иногда эту область называют видеобуфером. Видеопамять занимает определенную область в адресном пространстве оперативной памяти компьютера, следовательно, видеопамять имеет ограниченный размер.

Видеопамять и похожа, и в то же время не похожа на RAM . Обычная память соединена с центральным процессором специальным устройством, которое называется шина данных. Не останавливаясь подробнее на конструкции шины данных, скажем лишь, что это просто пакет проводов, количество которых кратно двум. Можно сказать, что чем больше проводов в пакете, тем быстрее происходит обмен данными между процессором и памятью. Современные Pentium -машины имеют 32-разрядную шину, т.е. процессор может сразу читать 4 байта из памяти (и столько же в нее записывать). Разрядность шины данных – одно из самых узких мест в конструкции компьютера.

Видеопамять, как и любая другая память, соединена с процессором шиной данных. Но видеопамять, кроме того, подключена к специальной электронной схеме, которая на основе данных, хранящихся в видеобуфере, формирует изображение на экране. Физически экранное изображение обновляется 60 раз в секунду – с такой частотой упомянутая электронная схема осуществляет сканирование видеобуфера. Поэтому любое изменение состояния видеобуфера практически мгновенно (с точки зрения человека, смотрящего на экран) приводит к изменению изображения на экране.

Электронная схема, сканирующая видеобуфер и преобразующая двоичные числа в видеосигнал, называется адаптером видеодисплея или просто видеоадаптером.

Сегодня все большую популярность приобретают так называемые жидкокристаллические мониторы. Но большинство действующих сегодня мониторов по-прежнему представляют собой устройства, изображения в которых строится с помощью электронно-лучевой трубки. Напомним еще раз известный из курса физики принцип формирования изображения, получаемого в этом случае.

Этот способ называется растровым сканированием. Изображение «рисуется» тщательно сфокусированным электронным лучом. Поток электронов «бомбардирует» экран, покрытый специальным светящимся веществом – люминофором. Места, в которые ударяются электроны, начинают фосфоресцировать. В каждой точке свечение затухает приблизительно в течение нескольких сотых долей секунды, поэтому необходимо постоянно повторять «бомбардировку» поверхности экрана. Это задача специального устройства – электронной пушки. Наводчик электронной пушки (специальное электронное устройство) рассматривает весь экран как последовательность множества линий. Он «простреливает» последовательно каждую линию – слева направо, точка за точкой.

Движение луча по экрану происходит с огромной скоростью. Чтобы изображение, которое воспринимает человек, не было мерцающим, весь цикл – от первой до последней строки – должен быть закончен за 1/60 секунды (или еще быстрее). Следовательно, за секунду происходит не менее 60 проходов луча по всему экрану, строка за строкой. Такая схема формирования изображения называется растром. После того, как луч доходит до последней точки последней строки (до правого нижнего угла экрана), он мгновенно по диагонали переносится в начало первой строки экрана (левый верхний угол), и процесс повторяется.

Формирование цветного изображения осуществляется не одним, а тремя электронными лучами (красным, зеленым и синим), перемещающимся по экрану одновременно. Три луча подсвечивают сразу три элемента экрана, расположенных на очень незначительном угловом расстоянии друг от друга, поэтому человеческий глаз воспринимает эти три элемента как одну точку. Благодаря различной интенсивности свечения каждой из трех точек и эффекту аддитивного смешения трех цветов такая составная точка может иметь любой цветовой оттенок. Качество изображения тем выше, чем меньше расстояние между двумя отдельными точками. В современных мониторах расстояние между точками не превышает 0.25–0.26 мм.

Вернемся к видеоадаптеру. Помимо всего прочего, он должен подавать специальные синхронизирующие сигналы электронной пушке для правильного формирования изображения на экране. Первый синхронизирующий сигнал – V -сигнал – подается для начала сканирования экрана; второй сигнал – H -сигнал – для начала сканирования очередной строки. Кроме того, видеоадаптер должен управлять интенсивностью сканирующего луча. Интенсивность луча может меняться при прохождении каждой растровой точки, а значит можно произвольно менять и интенсивность свечения точки.

Существует два принципиально разных способа указания интенсивности свечения пикселя.

Первый применяется в так называемых цифровых мониторах. В этом случае для каждой точки монитору подается информация об ее интенсивности в виде двоичного числа. Используя аддитивную модель, передавая два бита для каждого цвета (красный, зеленый и синий), из которых формируется цвет точки, можно получить 64 цвета (4*4*4). Однако при увеличении количества цветов нужно увеличивать и количество битов для каждого цвета (т.е. количество проводов для каждого цвета).

Поэтому конструкторы мониторов, в конце концов, отказались от цифровой схемы и пришли к аналоговой. При этой схеме сигналы V и H остаются по-прежнему цифровыми, а сигналы о трех составляющих цвета становятся аналоговыми и поступают по трем проводам. На каждом проводе поддерживается напряжение от 0 до 1 вольта с плавным переходом из одного состояния в другое. Ноль вольт на проводе указывает на отсутствие свечения, 1 вольт – на максимальное свечение. При такой схеме каждый из трех цветов условно может принимать бесконечное число оттенков. Следовательно, таким образом можно задавать десятки миллионов цветов.

 

Форма входа
Пошук
Календар
«  Квітень 2019  »
ПнВтСрЧтПтСбНд
1234567
891011121314
15161718192021
22232425262728
2930
Друзі сайту
Погода у Вінниці


Єдина Країна! Единая Страна!